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ABSTRACT

Although remote sensing has a central role to play in the acquisition of synoptic

data obtained at multiple spatial and temporal scales to facilitate our understand-

ing of local and regional processes as they influence the global climate, the use

of thermal infrared (TIR) remote sensing data in this capacity has received only

minimal attention. This results from some fundamental challenges that are as-

sociated with employing TIR data collected at different space and time scales,

either with the same or different sensing systems, and also from other problems

that arise in applying a multiple scaled approach to the measurement of surface

temperatures. In this paper, we describe some of the more important problems

associated with using TIR remote sensing data obtained at different spatial and

temporal scales, examine why these problems appear as impediments to using

multiple scaled TIR data, and provide some suggestions for future research activ-

ities that may address these problems. We elucidate the fundamental concept of

scale as it relates to remote sensing and explore how space and time relationships

affect TIR data from a problem-dependency perspective. We also describe how

linearity and non-linearity observation versus parameter relationships affect the

quantitative analysis of TIR data. Some insight is given on how the atmosphere

between target and sensor influences the accurate measurement of surface tem-

peratures and how these effects will be compounded in analyzing multiple scaled

TIR data. Last, we describe some of the challenges in modeling TIR data ob-

tained at different space and time scales and discuss how multiple scaled TIR

data can be used to provide new and important information for measuring and

modeling land-atmosphere energy balance processes.
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1, INTRODUCTION

The determination of surface temperature is a critical component in calculating

the energy balance constituents of land-atmosphere interactions. This is particu-

larly important in measuring and modeling boundary layer energy balance pro-

cesses such as soil moisture, evapotranspiration, and fluxes of sensible and latent

heat, and their partitioning across the surface of the Earth. Remote sensing pro-

vides a means for the synoptic measurement of these land-atmosphere energy

fluxes and also offers the potential for understanding how different temperature

fields are scaled between different spatial and temporal resolutions (Goetz et al.,

1993, 1994). Thus, using remote sensing to both observe and measure changes in

fluxes of sensible and latent heat as a response to changes in spatial or tempo-

ral scale, will result in the development of better and more accurate models of

these fluxes as they affect local, regional, and even global predictions of climatic

variations. Remote sensing has a central role to play in the acquisition of synop-

tic data collected at multiple spatial and temporal scales that will facilitate our

understanding of local scale processes (e.g., catchment watershed basin charac-

teristics) as they influence regional scale processes (e.g., stream and river basin

hydrodynamics). In fact, analysis of multiple spatial and temporal scaled remote

sensing data is critical to understanding the coupling between the terrestrial land-

scape and the atmosphere (Halt et al., 1988).

It has been suggested that the use of multiple scale thermal infrared (TIR)

remote sensing data could provide information on important cultural, geological,
and agricultural variables (Lynn, 1986; Schott, 1989). To date, however, the use of

multiple scaled TIR data to analyze Earth-surface characteristics and processes

has not been fully exploited. This results from some fundamental challenges that

are associated with using TIR data obtained at different spatial and temporal

scales, both from the same and different sensors, as well as some basic problems

that arise in applying a multiple scaling approach to the measurement of surface

temperatures. In this paper, we wish to describe some of the more important

problems associated with using TIR remote sensing data obtained at different

spatial and temporal scales, examine why these problems appear as impediments

to using multiple scaled TIR data, and provide some direction for future research

that may resolve these problems. We will present these points from a general

viewpoint and will not delve into some of the more complicated issues concerned

with TIR data analysis, such as emissivity and the problems associated with cal-

culating emissivity from TIR data acquired at different space and time scales. We

approach our discussion by first describing the fundamental concept of scale as it

relates to remote sensing. Such a discussion is necessary to define what is meant

by scale, from both a spatial and temporal sense, as a foundation for under-

standing what happens when data from either the same, or different, sensors are

combined together for multiple scaled analyses. We then discuss how space and

time relationships affect TIR data from a problem-dependency perspective and

describe how linearity and non-linearity observation versus parameter relation-

ships affect the quantitative analysis of TIR data. We also present some insight
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onhowtheatmospherebetweentargetandsensorinfluencestheaccuratemea-
surementof surfacetemperaturesandhowtheseeffectswill becompoundedin
analyzingmultiplescaledTIRdata.Last,wedescribesomeof thechallengesin
modelingTIR dataobtainedatdifferentspaceandtimescalesandoffersome
insightintohowmultiplescaledTIR datacanbeusedto providenewandim-
portantinformationformeasuringandmodelingland-atmosphereenergybalance
processes.

2. THE FUNDAMENTAL ELEMENTS OF SCALE

To understand the characteristics and interrelationships of analyzing multiple

scaled remote sensing data, it is first necessary to define the term "scale." Scale,

from a remote sensing perspective, can be defined as the integral (or interval) of

space or time over which a measurement is made. The element of scale, there-
fore, exists as a dimension of observation (i.e., a measurement metric) more so

than the dimension of the phenomenon being observed (i.e., the process being

observed). Thus, in a multiple scaling approach, the aspect of scale focuses on
some unit of measurement that is a defined relationship to some known quantity,

such as ground-to-map distance, or a temporal interval (e.g., day, week). From
a multiple scaling perspective, the different types of data brought together for

analysis will reflect the respective scales at which they were collected, as a func-

tion of some defined spatial or temporal measurement characteristic (e.g., 20 m

SPOT multispectral data) (Foody and Curran, 1994).
Two fundamental scales exist to guide the collection, manipulation, and anal-

ysis of remote sensing data: (1) space (or spatial) and (2) time (or temporal).
Spatial scale, from a practical viewpoint in remote sensing, is governed by the

size of the smallest object that can be reliably detected against a spectrally con-

trasting background. Spatial scale is generally referred to more directly in remote
sensing as effective resolution element (ERE). ERE is predicated upon a number
of factors, such as instantaneous field of view (IFOV) (i.e., the geometric proper-

ties of an imaging system that control sensor resolution characteristics) and other

sensor, atmospheric, data processing, and scene properties (Davis and Simonett,

1991). Temporal scale usually denotes the unit of time over which data are col-

lected for analysis (e.g., day, week, year). The time scale of remote sensing data
can also refer to a single instant in time or can take on a range of dimensions

from historical (before present), current (a time span that envelopes the present

within some defined limits), and future.
More generically in remote sensing, space and time scales are embraced within

the concept of characteristic scale or scales. Characteristic scale is associated with

the recognition and linkage of specific levels of space and time scales by a specific

Earth-science discipline. Characteristic scales define the space and time intervals

over which a process or processes can be detected or monitored within a spe-

cific disciplinary purview (Quattrochi, 1993). For example, atmospheric scientists

distinguish microscale versus mesoscale processes as those occurring at spatial
scales of 0.01 to 1,000 m versus 10 to 1,000 km, respectively (Davis et al., 1991).
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These would represent atmospheric characteristics ranging from such phenom-

ena as advection occurring at microscales (e.g., transfer of sensible heat across a

small plot of vegetation) to mesoscale or even global advection dynamics related

to the movement of weather systems. Characteristic temporal scales for atmo-

spheric scientists may range from a few seconds for determining changes in fluid
dynamics of the atmosphere to days in the analysis of hurricanes and attendant

atmospheric circulatiOn patterns. Thus, characteristic scales define the space and

time intervals with which a process can be detected and monitored; ultimately,

characteristic scales influence the type of remote sensing data to use for analysis

of specific phenomena in Earth science investigations (e.g., Landsat TM versus

AVHRR data to obtain seasonal analysis of vegetation characteristics, vigor, and

health).

2.1. Space and Time Scale Relationships as They Affect TIR Date

In relation to the use of remote sensing data, specifically to TIR data for the

purposes of our discussion here, three overriding questions must be addressed

for analysis of the scaling properties of Earth-surface biophysical properties:

• What are the characteristic spatial and temporal scales and scale dependencies

of Earth system processes and phenomena?

• What are the measurement scales of remote sensing data and their derived

products, and how do these scales vary depending upon sensor calibration and

geometric characteristics, data processing algorithms, and correction for the

intervening atmosphere?

• How can multiscale remote sensing data, either obtained from the same or dif-

ferent remote sensing systems, be integrated and linked in a statistically robust

design to model Earth systems?

These questions are similar to those presented by Turner et al. (1989a) in their

concern for predicting across scales in the emerging discipline of Landscape Ecol-

ogy, and by Davis et al. (1991) in their examination of environmental analysis of

remote sensing data. It is our intent to use these questions as a framework for

discussing how multiple scaled TIR data can be used to analyze and measure

important landscape and biophysical characteristics affecting land-atmosphere in-
teractions.

2.2. The Influence of Scale Dependence of Earth Surface Variation and TIR
Data

The observation and measurement of surface processes is highly scale dependent

(Ehleringer and Field, 1993). Hence, a phenomenon may appear homogeneous

at one spatial scale and heterogeneous at another (Davis et al., 1991). Because

spatial heterogeneity constrains the ability to transform information from one

scale to another, it is an important factor in integrating remote sensing data ob-
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tained from different scales and from different sensors. For example, Turner et al.

(1989b) have shown that landscape pattern has a significant influence on the

response of measurements to changes in spatial scale. The problems associated

with deriving measurements of spatial phenomena from multiple scaled remote

sensing data may not occur where homogeneity predominates. Thus, we can also

say that in addition to surface phenomena being scale dependent, they are also

problem dependent, whereby the stability or variability of the phenomenon or

process under observation, as manifested in remote sensing data, will directly

influence its qualitative and quantitative interpretation using remote sensing.

Spatial covariability (the degree of scale dependence between values of a spa-

tial process at different locations) is a key consequence of scale dependence.

Associated with spatial covariability is the filtering of surface variation across the

scene. Because most natural surfaces are highly variable across large areas, sur-

face variation is filtered or regularized across a remote sensing scene (i.e., the sur-

face variation fo natural phenomena is "smoothed" across the scene as a product

of sensor IFOV and other sensor-dependent characteristics). Scene regulariza-

tion is an important feature of remote sensing data (particularly from satellites)

that distinguishes these data from other sources of spatial (i.e., geographical) in-

formation (Davis and Simonett, 1991). The effects that scene regularization have

on remote sensing data can be summarized (from Moik, 1980) by measuring the
reflected radiance of a surface at location x at time t:

f(x,_,t,p) = r(x,)_,t,p)i(x,)_,t) (1)

where r(x,)_,t,p) is the reflectance of the surface as a function of position (x),

wavelength ()Q, time (t), and polarization (p), and i(x,._,t) is the incident illu-

mination. This relationship can be simplified by considering only the variation in

reflectance with spatial position, f(x).
An important property inherent to scene regularization and variation in remote

sensing data is spatial autocorrelation or autocovariance. Spatial autocorrelation

measures how f(x) varies as a function of the distance and orientation between
observations. If there is any systematic pattern in the spatial distribution of a vari-

able, it is said to be spatially autocorrelated. If the pattern of the phenomenon

or process observed via remote sensing is such that nearby or neighboring areas
are more similar than more distant areas (with distance referring to spatial sepa-

ration on the image), then the pattern is positively spatially autocorrelated. Most

spatial phenomenon, be it physical (i.e., geomorphological), biophysical (e.g., veg-
etation type distribution), or cultural exhibits positive spatial autocorrelation pat-

terns. Spatial patterns of Earth-surface phenomena that exhibit negative spatial

autocorrelation (i.e., neighboring patterns are not alike) are not common. Be-

tween the two extremes are patterns that exhibit no spatial autocorrelation (i.e.,

random). Spatial autocorrelation is important in remote sensing; the identifica-
tion, monitoring, measurement, and change in patterns is a fundamental theme

in Earth science research. For example, spatial autocorrelation is the basis for

the recognition of spatial variability in determining land versus water, field versus
forest, or urban versus rural areas (Meentemeyer, 1989). It is often useful in
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remotesensingto searchfor thelevelof resolutionwhichmaximizesthespatial
variabilityof a phenomenonor processatdifferentspatialandtemporalscales.
Patternsthathavea highdegreeof positivespatialautocorrelationat onescale
of imagerymaynothavethesamedegreeof spatialautocorrelationatanother.
Thermalresponsesfor specificphenomenonor processesmaybesimilar(i.e.,
positivelyautocorrelated)atahighspatialscale(i.e.,highspatialresolution)and
maybeonlyminimallyautocorrelatedata lowspatialscale(i.e.,lowspatialres-
olution).

Thereceptionof asignalgeneratedbyaparticulartargetwill alsobeaffected
bythespatialresolutioncharacteristicsof thesensingsystemastheyrelateto
thesizeof thetarget(Burnayet al.,1988).ForTIR sensors,theradiationfrom
anypointin theobjectisspreadoutoverasmall,butfinite,areawithinanim-
age.Consequently,areaswithtemperaturesabovetheirsurroundingswill appear
to havelowertemperaturesthantheyactuallydo,whiletheconverseoccursfor
areasat a lowertemperaturethantheirsurroundings.Asa resultof thiseffect,
targedifferencesbetweenactualtemperaturesof anobject(i.e.,thoseexisting
forthetargetbeingobservedatthetimeof sensing)asmeasuredfromTIRdata
canoccur,particularlyfor smallobjects(i.e.,objectswitha smallspatialsizein
referenceto theoverallscenesizeof theTIR data)(Burnayet al.,1988).In the
caseofamultiplescaledTIR remotesensingapproachwheredataacquiredfrom
bothdifferentsensorsandatdifferentspatialresolutionsarecombinedfor anal-
ysis(e.g.,LandsatTM channel6 120m,andAVHRR1.1kmdata),thisproblem
wouldbeexacerbated.Althoughthereisnopracticalwayto circumventthisprob-
lem,it lendsmorecredenceto theconceptthatfroma multiplescalinganalysis
perspective,thefirstpriorityis to knowasmuchinformationaspossibleabout
theoverallpatternsthatcomprisethedistributionofthephenomenaorprocesses
underobservation.Forexample,is it thenatureof thetargetunderobservation
or theunderlyingprocessesthatformthedistributionof thetargetto bedisperse,
aggregated,or random?Also,arethereanyphysiographicfactorsthatmayhave
anunderlyinginfluenceonthethermalresponseof thephenomenaor processes
underinvestigation?Thesefactors(e.g.,topography,slope,aspect)wouldinflu-
encethesolarilluminationof thephenomenonor processandthus,itseffective
thermalresponse.Additionally,attributes,suchasknowledgeof antecedentme-
teorologicaleventsthatwouldpossiblyinfluenceboththepatternof thetarget
(e.g.,precipitationfallingovertheportionof anAVHRRagriculturalsceneand
notoveranother)andthethermalresponsefor thetarget(e.g.,excessivesoil
moistureinoneportionof anAVHRRimageversusadeficitinanother),would
affectboththemagnitudeanddistributionof thermalresponseasrecordedby
thesensor.

A secondpriority(atleastinmostcases)inscalingTIRdatais to utilizedata
fromthesensorwith thefinestspatialresolution(i.e.,thehighestlevelof spa-
tial resolution)asabaselinemeasurementsourcefor understandingthethermal
responsecharacteristicsof thetarget.Thedecisionto usea sensorwitha high
spatialresolutionoverthosewith lowerspatialresolutionswouldobviouslybe
affectedbythesensor'sengineeringcharacteristics,suchasthenoise-equivalent
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power(NEP).NEPrefersto theenergyof thatinputradiationfallingon the
detectorwhichwouldgiveanoutputsignalequalto thenoisegeneratedbythe
detector;thesmallerthevalueof theNEP,thebetterthedetector(Anderson
andWilson,1984).It canbeassumed,however,thata highspatialresolution
wouldlessenanyimpactsassociatedwith thesizeof thetarget,particularlyif
detectionof objectsof smallsizerelativeto theoverallsizeof theobjectsin the
sceneis important.Therefore,asdatafromsensorswithsuccessivelylowerspa-
tial resolutionsarecombinedwithhigherresolutionTIRdata,thermalresponses
of objectsrecordedbythesensorsfor specificground-resolutioncells(GRCs)at
thehighestpossibleresolutioncanbeusedto"calibrate"theresponsesrecorded
at lowerspatialresolutions.TheGRCisdefinedasthegroundsegmentsensed
at anyinstantbytheIFOVof thesensor.Theaveragevalueof thespectralre-
flectance,spectralemissivity,orbackscatteringcross-sectionfor theGRC,which
is recordedasa pictureelement(pixel),will dependuponthecontentof the
GRC,its heterogeneity,topography,slope,andaspect(DugginandRobinove,
1990).A linearrelationshipbetweenTIRvaluesatdifferentspatialscalescannot
beassumed;however,useof thehighestspatialresolutiondataasacalibrationor
referencesourcewill providesomemeasuretotranslatethermalresponsevalues
acrossspatialscales.

3. SPATIAL AND TEMPORAL NOISE, IMAGE INFORMATION CONTENT, AND

LINEAR AND NON-LINEARITY RELATIONSHIPS IN SCALING TIR DATA

Noise is the pervasive phenomenon inherent to any remote sensing system. From

a classical remote sensing perspective, "noise" can be defined as the introduction

of any extraneous signal that competes against the desired signal, and thereby

degrades the quality of the remotely sensed data (Colwell, 1983). Noise is usually

perceived as being a function of instrument engineering design and performance
or signal-to-noise ratio (S/N), wherein it is most desirable to have the highest

ratio of desirable signals to noise. In remote sensing terminology, noise can be

classified as coherent (noise signals that have a definite relationship to one an-

other) or random. Sensor noise will obviously have an adverse impact on the
derivation of quantitative measurements from multiple scaled TIR data, and its

effects may be additive or even multiplicative. Numerous techniques exist, how-
ever, to remove the various components of noise from remote sensing data (e.g.,

Fourier transform) and will not be discussed here (see for example Moik, 1980;

Colwell, 1983; Hummer-Miller, 1990).

Also, what may be referred to as Target-to-Sensor (T-S) noise is of critical con-
cern to the analysis of multiple scaled TIR data in Earth science. Here, "noise" is

not a function the sensor signal-to-noise ratio, but is a product of the distribution,

pattern, arrangement, and overall spatial (and to some extent, temporal) char-

acteristics of biophysical, geographic, and topographic attributes that are mani-
fested as a TIR remote sensing scene. Additionally, the intervening atmosphere

between the target and sensor is an important modifier in the interpretation of

TIR data. Atmospheric effects as a factor in T-S noise and multiple scaled TIR



262 D.A.QUATTROCHIANDN.S.GOEL

datawill bediscussedin Section5.Figure1illustrateshowthesmallestviewed
groundelementbyaspecificsensor,or GRC, can be affected by T-S noise. De-

pendent upon the overall composite of GRCs or "footprint" inherent to a sensing

system, a TIR scene is influenced by the heterogeneity of the biophysical, topo-
graphic, and geographic parameters being sensed. For example, TIR data ob-

tained from an airborne platform with a high spatial resolution (e.g., 10 m) will

be much more sensitive to higher T-S frequencies (i.e., distinct changes in bio-

physical or ground characteristics at microscales) than similar data acquired from
sensors with lower spatial resolutions from the Landsat TM or AVHRR satel-

lites. Thus, heterogeneity at the surface will be manifested as various frequencies
of T-S noise as a function of the smallest viewed ground element of the sensor.

This issue is further extended in Figure 2, wherein the effects of the atmosphere

modify the thermal radiance upwelling from the ground and reaching the sensor,
which modulates T-S noise.

In the use of TIR for measurement of surface thermal attributes or processes,

some fundamental principals of image acquisition or analysis are: (1) the radiance

properties recorded in the image accurately represent both the thermal proper-

ties of the phenomenon or process (i.e., target) being recorded; (2) the imaged
data accurately represent the relative spatial (and temporal) frequency of the

phenomenon or process as it exists on the ground within the limits of the GRC

resolving capabilities of the imaging system; and (3) after processing, the image

data derived from TIR sensors can be rectified and superimposed on a map to
represent accurately the ground features under observation (Duggin and Robi-

nov, 1990). Points (1) and (3) are intimately related to the engineering character-

istics of the sensing system and the software used to process the data. Although

these points are obviously important to any discussion on multiple scaling of TIR
data, we wish to elaborate more upon point (2) and its relevance to both scale

dependency and the affect of integrating data collected at different measurement
scales.

3.1. Scene Versus Sensor Spatial Frequency

The spatial frequency of discernible variations in radiance from each part of the

scene will depend upon the thermal contrast between scene elements and on

built-in limitations of the sensor (i.e., engineering characteristics). A remote sens-

ing scene will have a two-dimensional spatial frequency spectrum (power spec-

trum) that is related to the spatial variation in upwelling thermal radiance levels

across the area in the scene. Each pixel in the image results from the averaging
of the upwelling thermal radiance within each GRC after modulation by the at-

mosphere and the sensing system (Figures 1 and 2). The two-dimensional scene

spatial frequency is delineated in terms of pairs of pixels within the sampled im-
age (Duggin and Robinov, 1990).

Within the concept of scene frequency, it is assumed there is a high degree of
correlation between the surface attributes of the target, the thermo-optical prop-

erties of the ground cover (i.e., the thermal radiance characteristics of the ground
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FIGURE 1 Illustration of the relationships between Ground Resolution Cells (GRCs) and differing

frequencies of biophysical, topographic, and geographic pattern as they affect Target-to-Sensor (T-S)

noise. Heterogeneity at the surface will be manifested as various frequencies of T-S noise, depending

upon the content of the GRC as recorded by the sensor.

cover as related to its biophysical properties), and the attributes of the acquired

image (e.g., radiometric quality). For TIR data, relations between the variables

giving rise to an upwelling spectral radiance response from a heterogeneous as-

semblage of scene components at ground level and radiance levels recorded for
each GRC may be expressed as follows (Duggin and Robinov, 1990):
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where

L(i.j) =

1�bid =

_-(o',_',_,) =

gt(X,Y) =

calibrated radiance value for pixel (i,j)

gain of sensor for pixel (i,j). This may vary slightly from
element to element of a focal plane array detector

spectral transmission of atmosphere along path to sensor with

zenith angle 0' and azimuth q_'
delta function which is equal to 1.0 is scene element 1 is

present in GRC (i,j) at position (X,Y). The fraction of the

GRC filled by scene element l is

f._2 f_2 gl(X,Y)dY dX

E'=. g,(X, Y)dY dXl=1 JX1

ai,j

*(_,,f)
W_(T)

_(o',_',a)

kso_r(O',_', ,_)

_(X,Y;x,y,A)

= offset of sensor for pixel (i,j). This may vary slightly from

element to element of a focal-plane array detector

= spectral response of sensor for electronic frequency

= Black-body radiant exitance for scene element l at absolute

temperature T

= spectral emissivity of scene element l, viewed with zenith an-

gle 0' and azimuth angle 97
= spectral self-radiance of the atmosphere viewed from zenith

angle 0' and azimuth angle q_'

= the point-spread function (PSF) of the sensor at wavelength
A, for radiance from ground coordinates (X,Y), producing a

point-like image at point (x,y) on the focal plane

where there are n scene elements in the GRC.

It is obvious from equation (2) that the spatial attributes (i.e., homogeneity
or heterogeneity) of the ground-cover types included in the GRC will affect the

intensity of thermal radiance from the ground and the spatial distribution of up-

welling radiance signatures reaching the TIR remote sensing system. Thus, the

spatial frequencies of the phenomenon or process under investigation will ulti-

mately be translated into a high or low sensor spatial frequency relationship (i.e.,
T-S noise factor) as recorded by the sensor. For the spatial frequency domain

()v) of the TIR sensor then,

Y{I(x,y)} = E(wx,Wy) (3)

where (x,y) are spatial coordinates of a location on the focal plane and (wx,Wy)
are the spatial frequencies recorded in the image plane in the x and y directions.

The sampled power spectrum is represented by E(wx,Wy). It is the power spec-

trum of the image with spatial frequency expressed in pixel pairs (i.e., GRC pairs)

and is a sample of the power spectrum of the radiance field upwelling from the
surface. Also,

.T'{L(X,Y)} = F(wx,COy) (4)
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whereF(wx, tOy) is the power spectrum of the radiance upwelling from the object

space or plane on the ground and where (tox, tOy) are spatial frequencies in the X

and Y directions in object space. The power spectrum of the upwelling radiance

field is continuous and will be influenced by the following factors (Duggin and
Robinov, 1990):

1. heterogeneity of the scene;

2. nature of the scene elements (i.e., heterogeneity and homogeneity);

3. illumination and view-angle geometry of the scene;

4. shape, size, and arrangement (pattern) of the scene elements (i.e., target char-

acteristics) within the TIR wavebound(s) used;
5. scale: size and shape of the GRC (i.e., the spatial resolution of the GRC as a

function of the IFOV of the sensor and the variation of the sensor response

across the GRC);
6. topographic variations (slope, aspect, elevation) within the GRC and the inter-

action of such variations with scene elements and their shape, size, and pattern

as they may be affected by illumination and view-angle geometry;

7. atmospheric effects (path radiance and transmittance); and

8. degradations in radiometric accuracy between pixels arising from sensor engi-
neering and calibration errors (e.g., sensor noise).

The effects noted above (and illustrated in Figures 1 and 2) may be additive,

multiplicative, or both and, as a consequence, may have pronounced influence

on T-S noise ratios. Scene versus spatial frequencies are also time dependent.

The eight items listed above may be highly influenced by temporal changes; thus,
comparing differences in images over time will be affected by corresponding

changes in the target (e.g., landscape changes, vegetation canopy, soil moisture),

the intervening atmosphere (e.g., humidity, temperature, barometric pressure),

and in sensor radiometric characteristics (e.g., variations in gains and offsets that

influence sensor radiometric fidelity).

3.2. Image Information Content and Non-Linearltles In Surface Temperatures In

Multiple Scaled TIR Data

Spatial and temporal frequency differences also reflect on the overall information

content or entropy of the scene. The entropy of a probability distribution may be

used as a measure of the information content of a symbol (i.e., image) selected

from this distribution. For an image, the entropy He of n random variables with

probability distribution Pk is defined as

pl

He = - _ p_ lOgE(pk ) (5)
k=l

where log 2 has a unit of information in bits (Moik, 1980). As He increases, so

does the randomness of information content of the image. Images with high en-
tropy values in the case of TIR data are hard to deal with. As entropy increases,



SPATIAL AND TEMPORAL SCALING IN THERMAL REMOTE SENSING 267

it becomes increasingly difficult to derive accurate surface temperatures because
the scene variability on a per pixel basis exceeds the ability of the sensing sys-

tem to detect relative changes in surface temperatures between pixels. Thus, as

entropy increases, there is a corresponding increase in the non-linearity in sur-

face temperatures as measured by remote sensing systems. This problem must

be considered in attempting to relate temperature differences between TIR data
collected at multiple scales. Here the scale at which the data are collected (as

well as sensor engineering characteristics) will influence the amount of entropy
extant in the scene. This will influence the derivation of surface temperatures

from a particular scene. Comparison of surface temperatures obtained from TIR
data collected over heterogeneous landscapes and at high spatial resolutions (i.e.,

large spatial scales) with TIR data over the same area acquired at lower spatial
resolutions (i.e., small spatial scales) will be subject to the vagaries of entropy

differences. It is most important, therefore, to be aware of the spatial frequen-
cies inherent to the phenomenon or process (or landscape) under investigation in

attempting to correlate derived surface temperatures from multiple scaled TIR
data.

Compounding the problems related to entropy maximization between multiple

scaled TIR data is the factor of the Stephan-Boltzman equation

W = 0"T 4 (6)

where W is radiant emittance in W m -2, _r is the Stephan-Boltzman constant

(5.6697 x 10 -8 W m -2 °K-4), and T is absolute temperature in °K. Because it
takes only a small change in energy to effect a large change in temperature, com-

parison of surface temperatures from multiple scaled TIR data will be highly

influenced by scene entropy as recorded by the sensor, along with the T-S noise
factors listed in Section 3.1. This stresses the need to obtain data with known ra-

diometric calibration coefficients so that the calculation of surface temperatures

will be as precise as possible within the limits of sensor engineering characteris-
tics. Otherwise, the derivation of surface temperatures from multiple scaled TIR

data (obtained from both the same and different sensors) and the comparison
of these temperatures at their respective scales will provide highly questionable
results.

An allied factor that may contribute to non-linearities in surface temperatures

as recorded by multiple scaled TIR sensors is that of the angular reflectance
characteristics of the target or targets under consideration. Angular reflectance,

as a result of both the geometry of the target (e.g., uneven forest or vegetation

canopy, differences in pitch angles of rooftops) and sensor-to-target geometric

relationships (i.e., off-nadir view angles) are much more pernicious in the visible
and reflective IR wavelengths as opposed to TIR data. Surface non-uniformity,

however, may influence temperature measurements from thermal data. The in-
tricacies of Lambertian and non-Lambertian surfaces (i.e., uniform and non-

uniform) and their relationships to remote sensing have been explored in-depth

(see, for example, Gerstl and Simmer, 1986; Kaufman, 1982, 1984, 1989) and they
will not be discussed in detail here. It is important to relate, however, that the

maximum amount of energy is emitted (i.e., radiated) by a body perpendicular to
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its surfaceplane.Conversely,noTIRenergyisradiatedtangentiallyto a body's
surface.TargetsemituniformamountsofTIRenergywithina30° boundary from

the plane perpendicular to the surface plane (Baraniak, 1983). Beyond this 30 °
boundary, there is an edge effect that occurs as a result of the Cosine Law fall-

off. This results in a reduction of energy received by a sensor within its IFOV.

For example, if a highly polished spherical or circular surface is viewed by a

TIR sensor, edges of the objects imaged will appear different from their centers.

This effect is continual for rough-textured surfaces and thus, a highly diffusing,

rough surface is referred to as a Lambertian emitter (Baraniak, 1983). It behaves
according to Lambert's Law which states that the incident energy from a target

to a detector (i.e., sensor) is equal to the amount of energy times the cosine

of" the angle of emittance. Many natural bodies are approximately full radiators

(i.e., Lambertian emitters), but the effects of non-Lambertian radiators cannot
be discounted, particularly in using multispectral TIR data. The effects of Lam-

bertian versus non-Lambertian surfaces on TIR data collected at multiple spatial

scales by different sensing systems have not been examined. It may be hypothe-

sized, however, that the Lambertian or non-Lambertian characteristics of a target
under consideration would be effected by the scales of observation and the ho-

mogeneity or heterogeneity of the surface. Thus, as the spatial scale of TIR data

becomes smaller (i.e., from 5 m to 1 km pixel size), there would be a greater

probability of surfaces to assume more Lambertian characteristics because the

thermal responses become more aggregated, and the cosine of the angle of emit-

tance becomes less of a significant factor in the amount of energy recorded by a
sensing system. The non-Lambertian effects caused by the heterogeneity in pat-

tern of a surface would be diminished as the spatial scale of observation using

a TIR sensor becomes smaller. For example, the non-Lambertian effects associ-

ated with a mixed forest-cropland landscape would become less significant as the
spatial scale of observation decreases from 10 m to 30 m because the scene fre-

quencies become more homogeneous. There may also be a temporal dimension

associated with this effect, particularly in regard to the study of Earth-surface

processes that are dynamic and change through time and seasons. Again, the re-

lationships of Lambertian versus non-Lambertian emittance as a function of scale

remain to be fully examined, but they should be considered within the context of

relating data obtained at multiple space and time scales for analysis of landscape

and biophysical processes using TIR remote sensing.

3.3. Scale Invarlance and Variance In Multiple Scaled TIR Data

A major concern arising from the use of data acquired either from the same

TIR sensor at different scales, or from different TIR sensors with varying spa-
tial resolutions, is whether thermal response measurements vary or are invariant

with scale. Although this topic has been alluded to in the previous sections, it is

useful to explore further the factor of scale variance or invariance in relating sur-

face temperatures because of its overall importance to analysis of multiple scaled
TIR data. Most TIR sensors are designed so that the effective spectral radiance
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TABLE 1

Comparison of TIR Remote Sensing Systems That Have Been Used to Derive Thermal Radiances
for Landscape Processes

IFOV

(mR) or
Spectral Ground Noise Data

Imaging Response Spot Size Level Quantization
System (,am) (km) (° K) (bits)

Landsat Thematic

Mapper (Band 6)
(TM)

Heat Capacity
Mapping Mission
(HCMM)

10.4-12.4 0.12 km 0.4 K 8

10.5-12.5 0.83 mR 0.4 K 8

Advanced Very High 3.55-3.93 1.51 mR
Resolution 10.3-11.3 1.41 mR
Radiometer 11.5-12.5 1.30 mR

(AVHRR)

Thermal Infrared 8.24.54

Multispectral 8.6_.95
Scanner 9.01-9.35

(TIMS) 9.40-10.15
10.2-11.2
11.26-11.60

0.12 K 10

2.5 mR 0.1-.3 K 8

(Adapted from Schott, 1989, p. 1311.)

observed can be be expressed as

Lx = ExLTxTX + rxLdxTX + L_x (7)

where

LA =

EA

LTA =

T A =

Ldx =

the observed spectral radiance in Wm -2 sr -1 #m -1

the wavelength dependent emissivity

is the spectral radiance from a blackbody at temperature T according

to Planck's equation

is the wavelength dependent atmospheric transmission

is the spectral downwelled radiance onto the target due to self-emis-

sion by the sky

is the wavelength dependent reflectivity

is the spectral upwelled radiance due to self-emission from the

atmosphere between the target and the sensor

wavelength (Schott, 1989).

In discussing potential problems associated with scale variance or invariance, it

is useful to compare selected features of several TIR sensing systems used to

derive thermal radiance values for landscape phenomena or processes. These

features are presented in Table 1. The amount of radiance recorded by a par-
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ticular sensor as expressed in equation (7) is modified by the components of
equation (2) and the power spectrum factors noted in Section 3.1. If thermal ra-

diance is variant with scale, then TIR data obtained at multiple space (and time)
scales would be very useful for analyzing the physical characteristics of the tar-

get under observation (e.g., biophysical attributes, pattern and arrangement) and
the thermophysical influences at the surface (e.g., aerodynamic roughness, wind).

Thus, the real virtue of using TIR data obtained at different spatial and tempo-
ral scales would be to assess how effective surface temperatures are manifested

in multiscaled TIR images obtained over the same area on the Earth's surface.

Detection of variations in temperatures with scale from TIR sensors would per-

mit more accurate modeling of landscape energy fluxes for developing a better

understanding of how thermal energy is partitioned across landscapes and how

these energy fluxes influence, or force, changes in land-atmosphere interactions
at local, regional, and global scales. Measurement of variations in effective radio-

metric temperatures from multiple scaled TIR data would provide insight into
how energy fluxes and landscape processes are related. Inherent within this is

_vhether TIR data obtained at regional scales (e.g., AVHRR 1.1 km resolution)

can be used to predict or model thermal energy flux relationships at larger (i.e.,
finer) spatial scales. The factor of scale variance in thermal responses would be

critical to understanding whether surface temperatures could be predicted across

scales, either from a "bottom-up" (i.e., larger to smaller spatial scales) or "top-

down" (i.e., smaller to larger scales) approach. This will be examined more fully
in the discussion on modeling and multiple scaled TIR data in Section 6.

Because of the paucity of references on multiple scaling of TIR data, there

is only limited evidence on the interrelationships of thermal responses recorded

at different spatial scales. The NASA FIFE project conducted over the Konza

Prairie in central Kansas has produced results that are inconclusive in defining
whether surface thermal energy responses are variant or invariant, as recorded

by different remote sensing systems and at different spatial scales. In a summary

research article, Hall et al. (1992) describe their results in attempting to under-

stand whether surface temperatures over the FIFE site were variant or invariant

with spatial scale. Data from the Landsat TM thermal band (120 m 2 spatial reso-

lution) were used to calculate temperature in two ways: (1) at the 120 m "patch"

level, using TM measured radiance and then averaging the 120 m results to ob-

tain a mesoscale value of T (°K) at 1 km (to approximate the 1.1 km 2 pixel size

of AVHRR data); and (2) by calculating T directly at the 1 km level by aggre-

gating the TM radiance to 1 km, and then applying the standard relationship
between radiometric temperature and emittance X given for the Landsat TM

thermal band (from Markham and Barker, 1986) as

T = Kz/In(K1/X + 1) (8)

where X is spectral radiance in mW cm -2 s -1 #m-l; K1 = 67.2 mW cm -2 sr -a

#m-l; and K2 = 1284.3 °K. Hall et al. (1992) assumed this relationship for the

range of temperatures between 27°C-37°C that commonly occurred during the

growing season over the FIFE site. They found good agreement in using TM
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thermal data to approximate changes in spatial scale from 120 m to 1 km levels;

i.e., surface temperature in this experiment was invariant with spatial scale. They
do note, however, that approximating how surface energy fluxes (e.g., sensible

heat) change with scale using satellite data is problematic.
In a related study from the FIFE program, Goetz et al. (1993, 1994) compared

thermal responses as recorded by a helicopter-mounted Modular Multispectral

Radiometer (MMR) (25 m z spatial resolution), the NS001 Thematic Mapper

Simulator (TMS) flown onboard on C-130 aircraft (400 m 2 spatial resolution),
and from the Landsat 5 TM (120 m 2 spatial resolution). They found that inter-

comparison of TM thermal data with near-surface level temperature measure-
ments ranged from 1 °C to 8 °C, with the Landsat TM consistently overestimat-

ing surface temperature (a result primarily of the TM sensor radiometric charac-

teristics). In contrast, surface thermal temperatures recorded by the MMR and
NS001 sensors for the same site, were in reasonable agreement with near-surface

level temperatures, with standard errors of 2.0 °C and 2.2 °C for vegetated tar-

gets.
Obviously, the question of whether surface temperatures as manifested in mul-

tiple scaled remote sensing data are variant or invariant with spatial scale is open

for more thorough measurement and research. The development of a more quan-
titative insight into how, or if, surface temperature changes with scale is critical

to understanding whether there are any thresholds that must be dealt with in

attempting to model surface temperatures at small spatial (i.e., broader) scales

using remote sensing. This is particularly acute in refining global climate change
models using Global Circulation Models (GCMs). For example, Garratt et al.

(1993) found that GCMs tend to overestimate the mean monthly levels of net

radiation by about 15%-20% on an annual basis for observed annual values in

the range of 50 to 100 Wm -2. This results from several deficiencies in modeling,

including land-surface temperatures being underestimated resulting in underesti-
mates of the outgoing longwave flux. Thus, it is important to identify any breaks
or thresholds in longwave flux (i.e., upwelling longwave energy from the Earth's

surface) from local to regional scales that may contribute to errors in net radia-

tion estimates using GCMs.

4. NEIGHBORHOOD CONSTRAINTS ON MULTIPLE SCALED TIR DATA

Another factor that affects the analysis (and modeling) of TIR data for measure-

ment of thermal responses of landscape phenomena is the aspect of neighbor-

hood constraints. These constraints can be generalized into two types: (1) Baye-

sian or decision-making; and (2) time dependent. Bayesian constraints relate to

the restrictions placed on the use of TIR data in using the results from remote

sensing data to infer (or predict) otherwise unknown surface temperatures. Thus,
instead of predicting actual surface temperatures, remote sensing data are used

as a surrogate for observed temperatures on the ground. For example, it cannot
be assumed that a set of thermal responses for a specific landscape phenomenon

or process measured using a specific TIR sensor (e.g., AVHRR) can be used to
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predictthesameTIR measurementseitherfromothersensors,or fromimages
recordedat differenttimesusingthesamesensor.Bayesianconstraintsarea
productoffactorsaffectingupwellinglongwaveradiancefromthesurface[equa-
tion (2)] andfromthoseassociatedwithsceneversussensorspatialfrequency
listedin Section3.1.Wecannot,therefore,havecleara priori knowledge (i.e.,

as inferred from the imagery) of which of the many landscape, biophysical, en-
ergy flux, and sensor engineering parameters will affect the inferential measure-

ment of temperature from TIR remote sensing data. Sensitivity studies and ther-

mophysical considerations of the target under observation, the structure of the

intervening atmosphere, and the sensing system used should provide some guid-

ance toward developing better a priori assessments of the constraints that may

be placed on the variety of surface temperature measurements from TIR data.
Although there is a priori uncertainty in predicting surface temperatures from

TIR data [see Price (1985) for a discussion of some the a priori considerations
that must be made], further examination fo TIR data for analyses of land-surface

and land-atmosphere interactions should, from a Bayesian perspective, improve

the predictability of TIR measurements. This is particularly true in improving

confidence in predicting how, or if, surface temperatures change over various

landscapes using a multiple scaled TIR remote sensing approach.

The second neighborhood constraint on using TIR data is time. A number of

studies using TIR data show that time-dependent relationships are good indica-

tors of surface temperature changes measured from multitemporal remote sens-

ing data (Lynn, 1986). Data from the Heat Capacity Mapping Mission (HCMM),
for example, have been used extensively for measurement of changes in surface

temperatures through time (Short and Stuart 1982; Carlson, 1986). Additionally,

much work has been done applying TIR remote sensing data to obtain estimates

of thermal inertia, which is a measure of the ability of a material to resist change

in temperature. Thermal inertia is a physical property of the surface material,
equal to (Kpc) 1/2, where K = thermal conductivity, p = density, and c = specific

heat (see for example Kahle et al., 1984; Kahle and Alley, 1985; Kahle, 1987). Al-

though the factor of temporal dependency in multiple scaled TIR data has been

alluded to in Section 2, time can also be examined as a neighborhood constraint;

i.e., the changes in AT for the same and neighboring phenomena as represented
by TIR remote sensing cannot exceed certain reasonable limits. Time constraints

result from the frequency of data collection (i.e., the time span between which

data are collected), and the sensor engineering characteristics of the same and

different sensors. For example, TIMS data have been used to measure short-term

thermal responses in forested landscapes as an estimate of canopy heat storage,

which is important in determining sensible and latent heat fluxes for forests (Lu-

vail and Holbo, 1989; Luvall et al., 1990). Although the magnitude of change

in observed temperatures for selected forested landscapes depends on tree type
(e.g., pine plantation, natural forested environment, clearcut or burned area),

these measurements should not exceed some reasonable temperature, given a rel-

atively short time span (15-30 minutes) between TIMS data collection over the

same site. One would assume, therefore, that a AT greater than say, 5°C-7°C
calculated from TIR data for a homogeneous forested landscape within a 15-30
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minuteperiod,wouldbeunreasonable.Microclimaticfactors,suchassoilmois-
tureconditions,overshadowing,windeddying,andsurfacesbeingheldaround
freezing,will undoubtedlyhaveaneffecton temporalchangesin predictedsur-
facetemperaturesusingTIRdata,but theresultingpredictedsurfacetempera-
turesshouldbewithinsomereasonabledynamicrange.Obviously,theproblem
of timeconstraintswill beexacerbatedin usingmultiplescaledTIR data,and
ana priori knowledge of the space and time factors that influence the upwelling

longwave radiance recorded by TIR remote sensors will be required to derive

accurate surface temperature measurements.

5. ATMOSPHERIC EFFECTS AND THEIR INFLUENCE ON MULTIPLE SCALED

TI R DATA

The prediction of surface temperature is a function of the heat-flow equation,
which describes the behavior of temperature (T) in a solid, such as rock or soil.

The heat-flow equation relates observed surface temperatures to the energy flux

exchanged with the atmosphere and is given by

pc_{ - 5z _ _ (9)

where temperature is a function of depth z, measured downward from the sur-
face, and time t, p is the density (kg m-3), c is the heat capacity (J kg-1), and k

is the thermal conductivity (J m -1 sec-a). For remote sensing applications, equa-

tion (9) is solved to yield T at the Earth's surface. The solution to equation (9)
assumes a surface boundary condition, which may be provided either by speci-

fication of the value of temperature as a function of time at the surface z = 0,

or by a condition placed on the surface energy flux (Price, 1989). This condition
can be given by specifying the value of the ground heat flux G at the surface,
where

G(z,t) = -k OT (10)
Oz"

Predicting surface temperatures using remote sensing employs an inverse so-
lution to the heat-flux equation; i.e., the thermal radiance of the target in ques-

tion is recorded by the sensing system, the inferred temperature is derived via

Planck's equation, and a thermophysical understanding of the derived tempera-

tures is sought that is consistent with the temperature value that is measured.
As noted earlier, emissivity is an important factor that must be considered in

accurately predicting the surface temperature of objects on the ground from re-

mote sensing. Although it will not be discussed here, calculation of emissivities

for ground objects from remote sensing has been measured using different tech-
niques that are applicable to accurately deriving the surface temperatures of a

variety of Earth surfaces (see, for example, Artis and Carnahan, 1982; Kahle,

1987; Hook and Kahle, 1990).
Outside of emissivity (and besides sensor radiometric engineering and calibra-

tion characteristics), the most important influences on deriving accurate surface
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FIGURE 3 Overview of the components of total thermal IR radiation upwelling from the Earth's
surface that reaches a remote sensing platform.

temperatures from TIR remote sensing data are the effects of the intervening

atmosphere between the sensor and the ground. Because of their importance in

predicting surface temperatures, atmospheric effects need to be examined to un-

derstand how they can be mitigated using atmospheric correction measures and

to speculate on how they will be exacerbated when using multiple scaled TIR

data. The atmosphere influences the interpretation of TIR data in three ways:

(1) the effect of skyradiation falling on the surface, (2) the absorption of IR

radiation by the atmosphere (atmospheric path transmission), and (3) the contri-

bution of emission by the atmosphere to the radiation received (atmospheric radi-

ance) (Anderson and Wilson, 1984) (Figure 3). The contribution of atmospheric

scattering to the received radiation may be disregarded as a major component of

atmospheric effects, since this is negligible for TIR wavelengths.

The quantity of radiation from the sky incident on the surface depends on

the low-level air temperature and on the amount of cloud cover; humidity and

gaseous composition have smaller effects. The amount of radiation from a clear
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sky is calculated by

Lsky = -170.9 + 1.195eTJ (11)

where Lsky is measured in Wm -2, Stefans constant cr = 5.660 x 10 .8 Wm -2 K -4,
and TA is air temperature in °K. Using equation (11), it is possible to accurately

calculate the downward sky radiation flux. The measurement of sky radiation can

be carried out either by having an upward-pointing radiometer (e.g., pyrgeome-

ter) at the surface or by placing a large sheet of material with high reflectivity,
such as aluminum, on or near the surface. When viewing this sheet, a TIR scan-

ner will see mainly reflected sky radiation. If the temperature and emissivity of
the sheet are known, the sky radiation can be assessed exactly (Anderson and

Wilson, 1984).
Two other factors associated with atmospheric effects on TIR data are more

difficult to accurately determine. Atmospheric absorption influences the quan-

tity and quality of thermal energy reaching the sensor. For data collection with

aircraft-mounted sensors, only the effects of water vapor and aerosols need be
dealt with. For satellite data, however, the effects of other absorbers that exist

higher in the atmosphere must be considered, such as ozone and carbon dioxide.

Aerosols are particularly vexing to account for, since it is difficult to determine
local atmospheric concentrations. This problem is usually overcome by conduct-

ing TIR airborne surveys when optical visibility is high (i.e., > 25 km) because

there is a close relationship between optical visibility and aerosol concentration

(Lee, 1973; Anderson and Wilson, 1984). The existence of water vapor cannot
be handled in a similar manner and it is necessary to calculate its effects on

TIR transmission. Transmission depends on humidity and air temperature, and

for pathlengths through the atmosphere of less than 1 km, it can be assumed
that the atmosphere is vertically homogeneous and produces only small errors

(Anderson and Wilson, 1984). One way that data on water vapor can be ob-
tained is through standard meteorological soundings via radiosondes, wherein
data on atmospheric temperature, barometric pressure, and humidity are trans-

mitted to a ground receiver as the sounding unit progresses upward through the

atmosphere.
Atmospheric attenuation involves the absorption and re-emission of radiation

in the atmosphere. This results from the atmosphere between the target and the

TIR remote sensing platform, and constituent atmospheric components such as

water vapor and various gases, having a temperature above absolute zero. As

defined by Planck's equation, the atmosphere and its constituents behave as

targets themselves, absorbing and emitting radiation within the atmospheric

path between the target on the ground and the TIR remote sensing platform.
Atmospheric path radiance is independent of the target of interest and adds
a finite amount of radiation to that in total reaching the TIR sensor (Anderson,

1992).
Although the effects of atmospheric path transmission and path radiance, if

left uncorrected, can provide inaccurate results when deriving surface tempera-

tures from TIR remote sensing data, they can be modeled using computer al-

gorithms. A widely-used atmospheric modeling program is the LOWTRAN soft-
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ware(Kneizysetal.,1983)thathasbeendesigned to estimate atmospheric trans-

mission and path radiance for a given atmospheric pathlength over a wavelength
region of 0.25-28.5 #m. The LOWTRAN software permits estimation of atmo-

spheric effects using one of six model atmospheres; these models may be mixed

to account for multiple variations for the six standard atmospheric models. Me-
teorological data may also be input to LOWTRAN to construct a definitive at-

mospheric profile for a specific site location. Additionally, this atmospheric mod-

eling software contains numerous aerosol models that define the properties of
four vertical subdivisions of the Earth's atmosphere. These aerosol models are

user-defined to permit a best representation of the atmosphere above the tar-

get at the time of TIR data collection (Anderson, 1992). LOWTRAN has pro-

duced good results in modeling atmospheric profiles when meteorological data
have been used to define atmospheric profile characteristics (Wilson and Ander-

son, 1986; Holbo and Luvall, 1989; Luvall and Holbo, 1989; Luvall et al., 1990;
Anderson, 1992; Quattrochi and Ridd, 1994).

Information from radiosondes input to atmospheric models, such as

LOWTRAN, do have drawbacks in that these data may not provide spatial esti-

mates of water vapor; i.e., radiosondes provide point data on atmospheric char-
acteristics that may or may not be representative for atmospheric correction of

regional scaled TIR data, for example from the AVHRR satellite. One procedure

that has been widely used to correct for atmospheric effects in estimating surface

temperature using AVHRR data is the "split window" method (Price, 1984; Dalu,
1986). In the application of the split windows technique, two channels within the

atmospheric water vapor window between 10.5-12.5 #m from the AVHRR (at

11 #m and 12 #m which correspond to channels 4 and 5, respectively) are used

to derive temperatures corrected for atmospheric absorption. The brightness tem-

perature differences between the channels (T4- T5) can then be directly related
to the atmospheric absorption due to water vapor. The split window method is

described in detail in Price (1984) and Dalu (1986). A concern in the direct

application of the split window method, however, is that it works well only for
retrieval of sea surface temperatures (SSTs) and is not suitable for direct calcu-
lation of temperatures over land. This is because the sea surface can be assumed

to be a black body with an emissivity of 1.0, as opposed to land surfaces which

are non-black body radiators with emissivities < 1.0. In the split window channels

of the AVHRR, natural surface emissivities are close to unity, but there is some

spectral variation that depends on surface type. Atmospheric and emissivity ef-

fects are coupled as a result of downwelling atmospheric radiance at the surface;

additionally, the emissivity effect depends on the surface-atmosphere temperature
difference. Recent work, for example by Becker and Li (1990), Coll et al., (1994a,

1994b), and Eck and Holben (1994), has addressed the problems associated with

using the split window approach for calculating water vapor absorption over land
surfaces.

In the analyses of multiple scaled TIR data, it may be seen where atmospheric
effects can have a deleterious cascading influence on the prediction and inter-

relation of temperatures from data acquired by different sensors (i.e., different

spatial scales) and at different times. One option is to assume all targets are



SPATIALANDTEMPORALSCALINGINTHERMAL REMOTE SENSING 277

black-bodies, and that the atmosphere does not exist. In this case, it would be

possible to calculate relative temperatures for landscape components as com-

puted for TIR data obtained from multiple sensors. Such estimates have some

utility for deriving temperature estimates collected over large areas of relatively

homogeneous land cover where the variation in emissivity would naturally be low

(e.g., agricultural fields, large water bodies) (Anderson, 1985). For most Earth
science research purposes, however, this method would provide highly inaccurate

temperature estimates for analyses of landscape characteristics and biophysical

processes.
A better, but much more resource-intensive method to compensate for the ef-

fects of atmosphere, is to obtain atmospheric profiles at the times of TIR data

collection. Meteorological data could be used in conjunction with computer al-

gorithms (e.g., LOWTRAN) to model atmospheric effects for data obtained at
different times and at different spatial scales, either by the same or with differ-

ent TIR sensors. The relatively high cost involved in collecting and processing

atmospheric profile data, however, is a limitation on obtaining these data in con-

junction with multiple scaled TIR data collection. Additionaly, this method is

opportunity specific; i.e., it involves considerable pre-data acquisition planning
and coordination which also restricts its applicability to intensive joint field and

remote sensing data acquisition campaigns, such as that conducted under the

auspices of the FIFE program (Sellers et al., 1992).

6. SPATIAL AND TEMPORAL MODELING WITH MULTIPLE SCALED TIR DATA

It is apparent that the extraction of accurate surface temperature measurements
from multiple scaled TIR data is not straightforward, given the challenges in

working with TIR data as described here. Still, it is obvious that the prospect
of using multiple scaled TIR data for analyses of thermal responses and en-

ergy flux relationships for landscape and surface-atmosphere interactions remains

high. Most importantly, it is not the sole use of multiple scaled TIR data in anal-

ysis of thermal responses that is the real virtue of applying a multiple scaled ap-

proach to a variety of Earth-science problems. It is the employment of multiple
scaled TIR data in modeling scenarios of land-surface thermal energy dynamics

that offers the most significant application of these data.
As noted by Strahler et al. (1986), a remote sensing model may be generalized

as having three components: (1) a scene model, which specifies the form and na-

ture of the energy and matter within the scene and their spatial and temporal or-

der; (2) an atmospheric model, which describes the interaction between the atmo-

sphere and the energy entering and being emitted from the scene; and (3) a sen-
sor model, which describes the behavior of the sensor in responding to the energy

fluxes incident upon it and in producing the measurements that constitute the

image. Attention has been already given to the importance of atmospheric and
radiometric calibration of TIR data within a multiple spatial and temporal scaled

context (e.g., atmospheric and sensor models). Thus, it is useful to use the con-

cept of the scene model to discuss the significance of multiple scaled TIR, both
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in spaceandtime,for developingmorerobustmodelsof landscapeandEarth-
systemprocesses.

Questionsof modelingmultiplescaledTIRdatainherentlyrevolvearoundthe
aspectsof spatialscale,scaleinvariance,andautocorrelationof thephenomena
underinvestigation.It is useful,therefore,to conceiveof thescenemodelsde-
scribedbyStrahleret al. (1986)asH-resolution and L-resolution models, which

reflect the extant relationships between the size of the elements (i.e., the target
or targets of interest) in the scene model and the GRC recorded by the sensor.

In an H-resolution model, the elements of the scene are larger than the GRCs;
conversely, an L-resolution model has scene elements that are smaller than the
GRCs.

Other factors that affect modeling of landscape phenomena and processes or
land-atmosphere interactions using multiple scaled TIR data focus on whether

the characteristics under observation can be modeled deterministically or empir-
ica#y. A deterministic remote sensing model employs basic physical laws con-

cerning electromagnetic radiation and, in the case of TIR data, the thermody-

namics of matter. The formulation of deterministic models specifies terms that

include properties and parameters of elements and describe real processes of

energy and matter interaction. An empirical remote sensing model relates ob-
served sensor measurements with scene elements, typically in a statistical fashion

(Strahler et al., 1986). A classic example of empirical models in remote sensing
are the statistical procedures used in developing multispectral classifications of

remote sensing data, such as maximum likelihood or probability density function
techniques. For modeling of multiple scaled TIR data, deterministic models are

most important because they attempt to associate real thermal radiance prop-

erties of the phenomenon or process being studied with those recorded by the

TIR remote sensing system. Given this theoretical background of remote sensing
models, it is useful to explore, at least from a general perspective, some potential

avenues where multiple scaled TIR data can be used in developing improved or

new models of landscape and surface atmosphere interactions.

6.1. Multiple Scaled TIR Models: Prospects and Caveats

Past research into modeling TIR remote sensing data has focused on the deriva-

tion of H- and L-resolution models for specific phenomena or processes. Hence,

TIR measurements have been made at the characteristics scales most opportunis-

tic to the deterministic analysis of surface thermal energy responses or fluxes.

Numerous studies have been conducted using hand-held, aircraft, and satellite
TIR sensors for measurement of biophysical responses of vegetation, such as soil

moisture, plant moisture stress, crop yields, and evapotranspiration (see, for ex-
ample, Fuchs and Tanner, 1966; Fuchs et al., 1967; Bartholic et al., 1972; Kimes

et al., 1980; Hatfield et ai., 1984; Reginato et al., 1985; Choudhury, 1989; Kustas

et al., 1989; Fuchs, 1990; Vining and Blad, 1992). These same thermal response
issues are of concern to those performing research on more diverse natural land-

scapes (Balick and Wilson, 1980; Fritschen et al., 1982; Taconet et al., 1986; Run-

ning, 1991; Nemani et al., 1993). The prospect of modeling surface temperature
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andenergyflux relationshipsusingmultiplescaledTIR data,however,offers
thepotentialfor developingintegrative models that heretofore were not available

for a broad spectrum of landscape processes and land-atmosphere interactions

(Curran and Foody, 1994). Moving to integrative models will enable us to incor-
porate TIR data obtained at different spatial scales and times with ground-based
radiometer and meteorological data into a common format, for predicting and

modeling across space and time continuums. Thus, multiple scaled TIR models

will permit extrapolation across H- and L-resolution models to provide mea-
surements of surface thermal gradients and thresholds for landscape processes

and land-atmosphere interactions regardless of spatial or temporal scale.

Multiple scaled TIR-based remote sensing models, for example, will be of great

utility in furthering the analysis of thermal "cross-over points," both in space
and time, for different biophysical processes. These cross-over points result as a

function of differential heating and cooling of objects and surface materials and

their attendant backgrounds. Periods of cross-over occur when a target's rate of
heat emission coincides with that of its background, producing the same ther-

mal radiance response incident upon a TIR remote sensor. The confusion of a

target's thermal surface response with that of its background leads to inaccurate
measurement of temperatures because dissimilar materials exhibit similar radiant

temperatures (Estes et al., 1983; Lynn, 1986). There usually are two diurnal times
of cross-over--morning and evening--and it is important to avoid these times

in the acquisition of TIR remote sensing data. Employing multiple scaled TIR

data, however, will potentially better elucidate both the timing and the critically

of these cross-over points, thereby providing times of optimal measurement for

analysis of Earth-surface and biophysical phenomena to avoid periods of thermal
cross-over. Moreover, as alluded to in Section 3.3, a multiple scaled approach

using TIR data will provide insight on whether any thresholds of surface tem-

peratures exist at explicit spatial or temporal scales. These temperature thresh-
olds would be important to the analysis of specific landscape biophysical

processes or land-atmosphere interactions that have not been identified using
mono-spatial and mono-temporal TIR data (e.g., scaling thresholds at which

changes in surface temperatures for a landscape can and cannot be accurately

measured).
Additionally, multiple scaled TIR data offer possibilities for developing both

an improved understanding and better models of surface energy fluxes. Although

results from the FIFE program show that estimating energy fluxes (e.g., sensible

heat) from TIR remote sensing data is problematical (Hall et al., 1992), there
is substantial evidence that surface energy balances can, with additional work

on resolving these problems, be measured using at least mono-scale TIR data

(Sader, 1986; Carlson, 1986; Taconet et al., 1986; Luvall and Holbo, 1989; Lu-
vall et al., 1990). Given the prospect for further research into resolving some of

the problems experienced in estimating energy fluxes, such as those described in
Section 3.3, multiple scaled TIR data may provide insight into the modeling of

how energy fluxes change with spatial and temporal scale, as well as how they

are affected by the observation of heterogeneous landscapes at different spatial
scales. The use of multiple scaled TIR data in estimation of surface energy bal-
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anceswouldbefurtherenhancedbyexploringmorecompletelytherelationships
betweenmeasurementsderivedfromground-basedinstrumentsversusTIR re-
motesensingdata,suchthoseinvestigatedbyMoranet al. (1989)andbythe
FIFEinvestigators(Sellersetal.,1992;Halletal.,1992;SellersandHall,1992).
Thecombiningof ground-basedenergybalance estimates with multiple scaled

TIR data would provide an integrated data base for modeling spatial and tempo-

ral dynamics of surface energy fluxes from both a "bottom-up" and "top-down"

approach (Caldwell et al., 1993). Such methods are necessary to appropriately

model the influence of landscape characteristics of local and regional climate

as an integral part of the current emphasis on understanding the processes and

effects of regional and global climate change (Pielke and Avissar, 1990).

6.2. Absolute and Relative Scale Models and Multiple Scaled TIR Data

It is unclear whether surface thermal changes at the micro-level, for example, at

the plant leaf scale, can be adequately related to the canopy, pixel, and scene lev-

els. Further exploitation of multiple scaled TIR will provide needed insight into

modeling how the interrelationships between levels of observation and the func-

tionality of biospheric processes change with space and time scales. This would

be beneficial to the successful translation of surface thermal response and en-

ergy flux models across scales, such as those needed to address global change

issues. Thus, the successful integration of ground-based meteorological data with

multiple scaled TIR data would provide simulations that bridge the gap between

absolute scale and relative scale models. Absolute scale (or space) describes actual

distance, direction, shape, and geometry as defined by a Euclidean-based coordi-

nate system (usually a gridded system), as well as the size of the area under ob-

servation (e.g., local, regional, global) (Meentemeyer, 1989). Relative space cen-

ters on two considerations: (1) that space is defined by the spatial elements and

processes under consideration and (2) that the end result of defining elements or

processes may result in the perception of non-Euclidean (i.e., non-gridded) terms
(Meentemeyer, 1989). Relative space, therefore, implies a transformation of ab-

solute space to a space that describes the relative distance, directicm, or geometry

predicated on some functional relationship (e.g., a process-oriented relationship).

Remote sensing observes phenomena from an absolute space perspective,

whereby it is relatively easy through image processing techniques to relate the

position and size of various phenomena (e.g., land covers) at various spatial

scales. Surface temperature and energy flux relationships on the other hand, are

process-driven; that is, they result from the direct and indirect thermodynamic
factors that control the uptake and dispersion of solar radiation and moisture

for specific phenomena or biospheric processes. Hence, the key in understanding

and modeling energy flux relationships is to link observations at both absolute

and relative scales. Figure 4 provides an illustration of how by using multiple

scaled TIR data in conjunction with ground-based meteorological data, it should

be theoretically possible to link models of absolute and relative scale processes

(see also Quattrochi, 1993). For example, if it is assumed that vertical fluxes
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dominate, the energy and moisture balance between the ground and the over-

lying atmosphere for landscapes are fundamentally functions of vegetation and

soil moisture. Although energy budget equations can be written to describe the
flux of heat and water into and out of the ground, there are several parameters

influencing these budgets that are directly dependent upon soil type and vege-

tation characteristics. Soil parameters include density, porosity, texture, thermal

diffusivity, hydraulic conductivity, and photometric properties. Vegetation param-
eters include leaf area index as a function of height, stomatal resistance, albedo,

aerodynamic roughness, displacement height, percentage coverage, and photo-

metric properties (Pielke and Avissar, 1990). Because the surface heat and water

budgets are functions of the values of these parameters, landscape changes in

general, will alter the energy balances of the soil and vegetation parameters. The

sensitivity of atmospheric conditions to even modest changes in surface charac-
teristics can be illustrated via the Earth's global energy budget

o'T_ = S(1 - A), (o = 5.67 × 10 -8 Wm -2 K -4) (12)

where we assume the Earth radiates as a black-body with a temperature TE, S

is the solar constant (S = 1380 Wm-2), and A is albedo of the surface. Thus,
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equation(12)illustratesthesensitivityof theEarth'sclimateto evenverysmall
changesin landuse(PielkeandAvissar,1990).Todevelopcompletemodelsof
thissensitivity,however,requiresthatwelinkabsolutescaleobservationsviare-
motesensing(i.e.,measurementatdifferentscalesusingTIRdata)withrelative
scaleprocesses(e.g.,changesinvegetationandsoilparametersin responseto
thermodynamicinput).Althoughthecauseandeffectprocessesinherentto land-
scapechangeandenergyfluxdynamicsmayappearcloseinabsolutespace(e.g.,
the identificationof a specificlandscapeor landscapecomponentasa source
of changein soilmoisture),thesefactorsmaybeverydistantin relativespace
(i.e.,thedynamicsof theattendantchangesinenergyfluxprocessesin response
to changesin soilmoisture)whentime,rates,andinteractionsareconsidered
(e.g.,therateof changein soilmoistureandevapotranspirationasa functionof
thedistributionandarrangementof landcoversacrossalandscape).Thedeter-
minationof thescaleatwhicha processor phenomenonoperates,therefore,is
difficultto identifyin termsof relativespaceandit wouldbebetterto transform
dataresidingin absolutespace(i.e.,remotesensingdata)to unitsbasedona
relativespaceto understandthespatialthresholdsinherentto process-response
mechanismsastheyaremanifestedatmultiplescales.Thus,bycombiningmulti-
plescaledTIR datawithotherdataasillustratedinFigure4,it wouldbepossi-
bleto understandthesynergisticlinkagesbetweencomponentsof thelandscape
with energyflux dynamicsto providea morecompletequantitativeof land-
atmosphereinteractionsastheyarereflectedat differentspatialandtemporal
scales.

7. CONCLUDING REMARKS

It is obvious that the path to the development of robust integrative models using
multiple scaled TIR data is a challenging one. Perhaps the greatest difficulties

in modeling multiple scaled TIR data arise from the scale-dependent nature of

landscape characteristics. Because landscape heterogeneity increases at finer spa-

tial scales, the concomitant surface thermal responses and energy fluxes also

become more complex. Thus, modeling of the sensitivity of fluxes to changes in

land-surface characteristics requires knowledge of natural spatial autocorrelations

and the patterns and distributions of landscape elements; i.e., are they disperse,
aggregated, or random? As we have seen, the arrangement of the landscape has a

paramount influence on the observation, detection, and measurement of surface

thermal responses and energy flux dynamics. The employment of multiple space

and time scaled TIR data in modeling thermodynamic attributes and energetics,
therefore, appears as a salient method for developing a better understanding of

the process-response mechanisms associated with different landscapes and the
changes of these landscapes over time.

Although the prospects of using multiple scaled TIR data to address questions

of landscape surface energy dynamics and land-atmosphere interactions are en-
ticing, there are a number of technical and theoretical difficulties that must be

more thoroughly investigated to bring the potential benefits of multiple scaled
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TIR data to fruition. Notwithstanding the difficulties associated with determining

emissivities, the incorporation of TIR data obtained from the same and differ-

ent sensing systems, and at differing spatial and temporal scales, must contend

with the problems associated with scene versus sensor spatial frequencies and
non-linearities in surface temperatures. In dealing with the manipulation of mul-

tiple scaled TIR data sets we must delve further into the questions associated

with how the atmosphere affects these data. It must also be noted that there is
a substantial increase in costs associated with using multiple scaled TIR data.

These costs accrue to the increase in money required to collect or purchase TIR

data obtained at different spatial or temporal scales (either from the same or

different sensors), in the time needed to manipulate and analyze these data, and

in the computing resources needed to process multiple scaled data. These costs

may be considerable, depending upon the extent of the data needed to support

overall research objectives (e.g., field and remote sensing data collection and

analyses to support a major TIR research campaign such as that illustrated in
the FIFE program are very expensive). Moreover, it is the analytical problems

that are most perplexing--those related to neighborhood constraints and scale

invariance--which produce perturbations in the analysis of TIR data obtained

at different space and time scales, and these pose important challenges to the
overall applicability of a multiple scaled approach using thermal remote sensing
data.

In contemplation of these factors, however, we must not lose sight of the fact
that landscape surface-atmosphere thermal interactions are integral to the oper-

ation of the Earth's energy budget. A key component in understanding how the

Earth's climate is changing, as influenced by anthropogenic and natural sources,

is to quantitatively evaluate the thermal energy processes that drive these changes

and the scale dependencies of these changes. Investigations into the processes-
responses associated with global change will be greatly impaired without under-

standing how to effectively utilize multiple scaled thermal IR data available from
current sensing systems, as well as for the planning and development of more

advanced TIR platforms. Ultimately, this may provide critical information for

understanding how the global climate system functions as an integrated system.
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